On Efficient Optimization of the LP Computable Risk Measures for Portfolio Selection
نویسندگان
چکیده
The portfolio optimization problem is modeled as a mean-risk bicriteria optimization problem where the expected return is maximized and some (scalar) risk measure is minimized. In the original Markowitz model the risk is measured by the variance while several polyhedral risk measures have been introduced leading to Linear Programming (LP) computable portfolio optimization models in the case of discrete random variables represented by their realizations under specified scenarios. Recently, the second order quantile risk measures have been introduced and become popular in finance and banking. The simplest such measure, now commonly called the Conditional Value at Risk (CVaR) or Tail VaR, represents the mean shortfall at a specified confidence level. The corresponding portfolio optimization models can be solved with general purpose LP solvers. However, in the case of more advanced simulation models employed for scenario generation one may get several thousands of scenarios. This may lead to the LP model with huge number of variables and constraints thus decreasing the computational efficiency of the model. Actually, the number of constraints (matrix rows) is proportional to the number of scenarios. while the number of variables (matrix columns) is proportional to the total of the number of scenarios and the number of instruments. We show that the computational efficiency can be then dramatically improved with an alternative model taking advantages of the LP duality. In the introduced model the number of structural constraints (matrix rows) is proportional to the number of instruments thus not affecting seriously the simplex method efficiency by the number of scenarios. Moreover, similar reformulation can be applied to more complex quantile risk measures like the Gini’s mean difference and the tail Gini’s measures as well as to the mean absolute deviation.
منابع مشابه
The Tail Mean-Variance Model and Extended Efficient Frontier
In portfolio theory, it is well-known that the distributions of stock returns often have non-Gaussian characteristics. Therefore, we need non-symmetric distributions for modeling and accurate analysis of actuarial data. For this purpose and optimal portfolio selection, we use the Tail Mean-Variance (TMV) model, which focuses on the rare risks but high losses and usually happens in the tail of r...
متن کاملA Fuzzy Goal Programming Model for Efficient Portfolio Selection.
This paper considers a multi-objective portfolio selection problem imposed by gaining of portfolio, divided yield and risk control in an ambiguous investment environment, in which the return and risk are characterized by probabilistic numbers. Based on the theory of possibility, a new multi-objective portfolio optimization model with gaining of portfolio, divided yield and risk control is propo...
متن کاملUsing MODEA and MODM with Different Risk Measures for Portfolio Optimization
The purpose of this study is to develop portfolio optimization and assets allocation using our proposed models. The study is based on a non-parametric efficiency analysis tool, namely Data Envelopment Analysis (DEA). Conventional DEA models assume non-negative data for inputs and outputs. However, many of these data take the negative value, therefore we propose the MeanSharp-βRisk (MShβR) model...
متن کاملOptimal Portfolio Allocation based on two Novel Risk Measures and Genetic Algorithm
The problem of optimal portfolio selection has attracted a great attention in the finance and optimization field. The future stock price should be predicted in an acceptable precision, and a suitable model and criterion for risk and the expected return of the stock portfolio should be proposed in order to solve the optimization problem. In this paper, two new criterions for the risk of stock pr...
متن کاملOn Extending the LP Computable Risk Measures to Account Downside Risk
A mathematical model of portfolio optimization is usually quantified with mean-risk models offering a lucid form of two criteria with possible trade-off analysis. In the classical Markowitz model the risk is measured by a variance, thus resulting in a quadratic programming model. Following Sharpe's work on linear approximation to the mean-variance model, many attempts have been made to lineariz...
متن کامل